首页> 外文OA文献 >Integrality gaps for strengthened LP relaxations of Capacitated and Lower-Bounded Facility Location
【2h】

Integrality gaps for strengthened LP relaxations of Capacitated and Lower-Bounded Facility Location

机译:增强Lp容量和松弛Lp弛豫的完整性空白   下界设施位置

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The metric uncapacitated facility location problem (UFL) enjoys a specialstature in approximation algorithms as a testbed for various techniques. Twogeneralizations of UFL are capacitated facility location (CFL) andlower-bounded facility location (LBFL). In the former, every facility has acapacity which is the maximum demand that can be assigned to it, while in thelatter, every open facility is required to serve a given minimum amount ofdemand. Both CFL and LBFL are approximable within a constant factor but theirrespective natural LP relaxations have an unbounded integrality gap. Accordingto Shmoys and Williamson, the existence of a relaxation-based algorithm for CFLis one of the top 10 open problems in approximation algorithms. In this paper we give the first results on this problem. We providesubstantial evidence against the existence of a good LP relaxation for CFL byshowing unbounded integrality gaps for two families of strengthenedformulations. The first family we consider is the hierarchy of LPs resulting from repeatedapplications of the lift-and-project Lov\'{a}sz-Schrijver procedure startingfrom the standard relaxation. We show that the LP relaxation for CFL resultingafter $\Omega(n)$ rounds, where $n$ is the number of facilities in theinstance, has unbounded integrality gap. Note that the Lov\'{a}sz-Schrijverprocedure is known to yield an exact formulation for CFL in at most $n$ rounds. We also introduce the family of proper relaxations which generalizes to itslogical extreme the classic star relaxation, an equivalent form of the naturalLP. We characterize the integrality gap of proper relaxations for both LBFL andCFL and show a threshold phenomenon under which it decreases from unbounded to1.
机译:度量能力丧失的设施位置问题(UFL)在近似算法中具有特殊的地位,可以作为各种技术的测试平台。 UFL的两个概括是功能限制的设施位置(CFL)和下限设施位置(LBFL)。在前者中,每个设施都有能力,这是可以分配给它的最大需求,而在最后,每个开放设施都需要满足给定的最小需求量。 CFL和LBFL在恒定因子内都是可近似的,但是它们各自的自然LP松弛具有无穷大的积分缺口。根据Shmoys和Williamson的说法,CFLi存在基于松弛的算法,该算法是近似算法中十大开放问题之一。在本文中,我们对这个问题给出了第一个结果。我们通过显示两个强化公式族的无穷整数缺口,提供了针对CFL良好LP松弛存在的大量证据。我们考虑的第一个族是从标准松弛开始重复应用提升和项目Lov \'{a} sz-Schrijver程序所产生的LP层次。我们证明,在$ \ Omega(n)$回合之后CFL的LP松弛具有无限的完整性差距,其中$ n $是实例中的设施数量。请注意,已知Lov'{a} sz-Schrijverprocedure在最多$ n $个回合中都能得出精确的CFL公式。我们还介绍了适当的弛豫族,将其经典的恒星弛豫(与naturalLP等效的形式)推广到其逻辑上。我们对LBFL和CFL的适当弛豫的积分缺口进行了表征,并显示了阈值现象,在该阈值下它从无界减小到1。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号